

JSC Commercial Human Space Flight Symposium October 13-14, 2010

Thermal Protection System (Heat shield) Development –

Advanced Development Project

T. John Kowal

Orion Thermal Protection System Manager

The Orion TPS Objective

Enable the CEV
Project Office and
the Prime to develop
a CEV heat shield...

Back shell

Heat shield

- A top risk identified at project initiation was the development of a heat shield capable of both LEO and Lunar return
 - Ablative TPS materials are required for LEO and Lunar missions
 - The US had focused little attention on ablative materials since Apollo era
 - Applicable ablative TPS materials were at low technology readiness levels (TRL ~ 3-4)
- In Oct 2005, the CEV Project commissioned the CEV TPS Advanced Development Project to address the heat shield development risk

... by initiating a Multi-Center Advanced Development Project to raise the TRL and reduce the risk of Lunar return capable ablative TPS materials and heat shield systems

CEV TPS Development Strategy (Critical Path Item)

- Baseline Heat shield (Lunar and LEO return capable) by Orion IOC
- Alternate Heat shield (Lunar and LEO return capable) parallel development, maintained up through system decision
- NASA develops Baseline & Alternate heat shield designs up to Orion PDR
- Prime takes over responsibility of heat shields after CEV PDR w/ NASA oversight
- Back shell TPS development controlled by Orion Prime w/ NASA oversight

Scope of TPS ADP Primary Objectives

TPS materials fabrication and characterization

- Development of material constituent, processing and properties specifications
- Detailed mechanical and thermal material properties testing

TPS materials thermal performance capabilities for LEO & Lunar returns

- Screening and comprehensive TPS materials thermal performance testing
- TPS materials thermal response models
- TPS thermal performance margins policy

TPS materials thermal-mechanical performance capabilities

- Ground, launch, on-orbit, nominal and emergency entry, descent & landing loads
- Thermal-structural integrated (carrier structure + TPS) testing

Design for all heat shield components

TPS acreage, carrier-structure, TPS bonding, compression pads, main seals, gap/seams, close-outs, repairs

• Integrated heat shield design and performance capabilities

- Integrated FEM analysis and design of all components
- TPS material thermal, MMOD and integrated sizing
- Integrated thermal-structural analysis and design of complete heat shield

Manufacturing for an integrated 5 meter heat shield

- Infrastructure, staffing, resources and equipment for full-scale heat shield production
- Demonstration of full-scale heat shield manufacturing procedures

Heat shield Thermal-Structural Test and Analysis

4-point Bend Flexure Test

Pre-test Analysis Predictions

Temperature Transients

Displacement Measurements

Testing performed primarily at LaRC

Thermal Vacuum Cycling-Simultaneous thermal & vacuum exposure

Environmental Chamber Test (-150 F to +250 F)

Heat shield Arcjet Testing

both ARC & JSC

Gap & Seam Testing

Oxygen Sensitivity Testing

IHF 207 Run 5, 10" PICA Alpha 2000 TC3 FIAT TC5 FIAT TC2 DATA TCD3 DATA TCD5 DATA 1000 500 1000 1500 2000 Testing performed at

Direct Results of the Orion TPS ADP

Competitive materials R&D resulted in multiple viable materials & systems

Avcoat: Selected for the Orion

TPS ADP Arcjet tests revealed catastrophic failure mode of initial MSL TPS

MSL shifts to a new TPS ADP developed TPS material

Large article arcjet testing demonstrated during TPS ADP is now a necessary TPS tool

- New NASA TPS experts
- Multiple TPS firms
- Large scale manufacturing
- TRL = 5-6 ablative TPS
- Promising new TPS concepts
- Technology transfer to commercial space industry

TPS ADP Completion and Transition to Prime

- The ADP matured two heat shield designs, Avcoat and PICA, to PDR status
- The final down-select between PICA & Avcoat proceeded as planned (3/31/2009)
- The TPS ADP terminated as planned on 3/31/09, and responsibility for the heat shield was transitioned to LM
- NASA continues to play a vital role in the Orion TPS design activities
 - NASA has substantial in-house capability in TPS, including expertise developed during Shuttle Return-to-Flight activities and the CEV TPS ADP, which is being leveraged for the CEV TPS development, design and certification
 - The Prime Contractor retains primary responsibility for the development, design, test, certification and delivery of the TPS
 - The are several critical areas where NASA has in-line responsibilities, including:

Analytical

- Ablation thermal response model development
- MMOD-impacted TPS response models
- Margin Policy development and buy-down
- Compression pad analysis & design

Testing

- Arcjet and radiant heat
- Thermal barrier
- Material property
- Tuneable beam shock

Conclusions from the Orion TPS ADP

- The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule
 - The ADP was motivated by the lack of available ablative TPS's
 - The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections
 - The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield
- In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following:
 - Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs
 - Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option
 - Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule

Capability: The development of Thermal Protection Systems (TPS), including thermal & structural analysis, design, materials & processes, and thermal (arcjet and radiant heat) testing

POC: Chris Madden, Chief – Thermal Design Branch christopher.b.madden@nasa.gov
(281) 483-6463